A Fault-Tolerant Server solution that lets you...

OUR FINDINGS
Both performance and ultra-high availability are crucial in many virtualized environments. In Principled Technologies’ tests in our labs, the Stratus ftServer 6300/NEC Express5800/R320a solution, based on Intel® Xeon® processors, provided out-of-the-box, scalable database performance and fault tolerance to all guest virtual machines (VMs) by supporting multiple virtual CPUs (vCPUs) per VM. It also continued to operate—without data loss and with nearly unchanged database performance on guest VMs—in the face of a potentially catastrophic event more extreme than is likely to ever occur in a real system: we caused one of the lock-stepped CPU/IO enclosures to fail by removing it from the chassis. Note: The NEC/Stratus fault tolerance solution is hardware-based and thus all guest VMs are immediately fault tolerant. We performed these tests without the use of either the VMware Fault Tolerance or VMware High Availability products.

OUR PROCESS
We measured database performance in a single VM with different numbers of vCPUs to see how well the Fault Tolerant Server’s performance could scale within a single VM. We also pushed the server to a very high work level (8 vCPUs in one VM) and removed an entire CPU/IO module. We used Microsoft SQL Server 2008 and the open-source DVD Store Version 2 benchmark (DS2) as our example database workload. DS2 takes orders and performs other functions representative of a real-world database application. For complete details on the methodology for this testing, including setup, configuration, and workload, please visit http://www.stratus.com/pdf/analysts/ftServer_Stratus_NEC.pdf.
PROJECT OVERVIEW

Stratus and NEC have worked together for the past 10 years to bring Fault Tolerance to the Intel® Server Architecture (http://www.stratus.com/news/2005/20051124.htm). Both firms have commissioned this test to assess the Fault-Tolerant Server’s performance scalability within a VMware VM and its data loss prevention in the face of a potentially catastrophic event.

Our first goal was to gauge the type of scaling the NEC/Stratus solution achieves in a single VM as one adds virtual CPUs (vCPUs). This scaling is important for database applications that require additional processing power beyond the amount a single vCPU can provide. We ran the DVD Store Version 2 benchmark inside a VM, using VMware ESX 4.0 as the hypervisor. We ran Microsoft® Windows Server® 2008 R2 with Microsoft SQL Server® inside the VM. To determine how performance scaled as we added cores, we tested with one, two, and four virtual processors assigned to the VM with a single database.

Our second goal was to gauge the performance level and data integrity of a database application on the Fault Tolerant Server in the face of a potentially catastrophic event. In our example test, we used a single heavily loaded 8vCPU VM – as many vCPUs as the server had physical processors cores. (Note: the Fault Tolerant Server has redundant sets of components, including processors, so there are 16 physical processor cores, but with redundancy, only eight of them are available.) We began the database workload, and then we actually pulled one of the lock-stepped CPU/IO enclosures from the chassis. An enclosure includes both a CPU and I/O element, so removing an enclosure removes half the system’s processor, memory, and I/O capabilities, simulating an event far more catastrophic than one that is likely to occur in a real-world environment.

WHAT WE FOUND

Scaling

As Figure 1 shows, database

![Performance scaling 5GB database, 1 VM from 1 vCPU to 4 vCPUs](image)

Figure 1: Number of DVD Store Version 2 orders per minute as the number of vCPUs increased from 1 to 4. Higher numbers are better.
performance scaled linearly as the number of vCPUs increased, and memory remained flat at 48GB. This shows that adding virtual processors increased system performance inside the VM with our workload. Figure 2 shows the number of orders per minute and the performance increase, relative to the single-vCPU configuration, for the three configurations we tested. On this and several of our preliminary test runs, the performance scaling from one to two vCPUs was slightly better than linear. This behavior may be due to SQL Server optimizations for multiprocessor architectures.

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>OPM (higher numbers are better)</th>
<th>OPM increase relative to 1 vCPU (higher numbers are better)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16,771</td>
<td>0.0%</td>
</tr>
<tr>
<td>2</td>
<td>36,833</td>
<td>119.6%</td>
</tr>
<tr>
<td>4</td>
<td>59,409</td>
<td>254.2%</td>
</tr>
</tbody>
</table>

Figure 2: Performance and percentage increase from the median run of DVD Store Version 2 for the three configurations we tested.

Continued performance and no data loss during a potentially catastrophic event

As we mention in the Project overview, we induced a potentially catastrophic event beyond that which any real-world server environment is likely to experience: We actually pulled a lock-stepped CPU/IO enclosure from the Fault Tolerant Server. We noted the performance before we removed the enclosure. We then observed a slight drop in performance that lasted 12 seconds. After this 12-second period, performance stabilized and began to increase gradually. After 26 seconds, performance returned to the pre-event level. As Figure 3 shows, the lowest performance during this period was 76,010 OPM, which is only 0.16 percent lower than the pre-event level of 76,129 OPM. The server lost no data at all.

<table>
<thead>
<tr>
<th>Potentially catastrophic event, 5GB database, 1 VM, 8 vCPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPM the server achieved before the potentially catastrophic event occurred</td>
</tr>
<tr>
<td>Lowest OPM the server achieved after the potentially catastrophic event occurred</td>
</tr>
<tr>
<td>Percentage performance drop due to the potentially catastrophic event</td>
</tr>
<tr>
<td>Seconds from the potentially catastrophic event to the time performance drop ended and performance stabilized</td>
</tr>
<tr>
<td>Seconds from the time performance stabilized to the time performance returned to pre-event level</td>
</tr>
</tbody>
</table>

Figure 3: DVD Store Version 2 performance results for a single VM with 8 vCPU during a potentially catastrophic event. Higher numbers of orders per minute are better.
ABOUT PRINCIPLED TECHNOLOGIES

We provide industry-leading technology assessment and fact-based marketing services. We bring to every assignment extensive experience with and expertise in all aspects of technology testing and analysis, from researching new technologies, to developing new methodologies, to testing with existing and new tools.

When the assessment is complete, we know how to present the results to a broad range of target audiences. We provide our clients with the materials they need, from market-focused data to use in their own collateral to custom sales aids, such as test reports, performance assessments, and white papers. Every document reflects the results of our trusted independent analysis.

We provide customized services that focus on our clients’ individual requirements. Whether the technology involves hardware, software, Web sites, or services, we offer the experience, expertise, and tools to help our clients assess how it will fare against its competition, its performance, its market readiness, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked together in technology assessment for over 20 years. As journalists, they published over a thousand articles on a wide array of technology subjects. They created and led the Ziff-Davis Benchmark Operation, which developed such industry-standard benchmarks as Ziff Davis Media’s Winstone and WebBench. They founded and led eTesting Labs, and after the acquisition of that company by Lionbridge Technologies were the head and CTO of VeriTest.

Principled Technologies is a registered trademark of Principled Technologies, Inc.

Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and other countries.

All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:

PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER, PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE. ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC.’S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.’S TESTING. CUSTOMER’S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.

Fault Tolerant Server solution performance: Scalability and catastrophe response